Advanced 3D Boolean Operations

3D boolean operations are essential for creating complex shapes and forms that would be difficult or time-consuming to model from scratch using traditional modeling techniques.

Industries that benefit from 3D boolean algorithms nowadays

3D Boolean operations are crucial in 3D modeling and manufacturing, streamlining the creation of complex models by allowing for efficient combination and subtraction of shapes.

  • In dental aligner production, they ensure aligners fit precisely by subtracting a teeth model from a block, critical for comfort and correction effectiveness.
  • CNC machining uses boolean operations to subtract toolpaths from material blocks, enhancing the final part’s precision and design adherence.
  • For injection molding, they craft detailed mold cores and cavities by subtracting the part model from the mold block, affecting the quality and accuracy of molded parts.

Overall, 3D boolean operations facilitate the design of intricate shapes, playing a key role in modern manufacturing by improving output quality and efficiency.

The primary 3D Boolean operations are:

The main 3D boolean operations, fundamental in 3D boolean library, include:

  • Union: Combines two objects into a single entity, showcasing the power of 3D union boolean operations in creating complex structures. This process is integral to the development of boolean models 3D, where two distinct models are united to form a more complex and detailed final model.
  • Difference: Essential for creating shapes with holes or missing parts, this operation highlights the utility of 3D software boolean difference. Utilizing 3D boolean software enhances the precision and efficiency of this operation, ensuring high-quality outputs.
  • Intersection: Demonstrates the ability to create new objects from shared spaces, a key aspect of 3D intersection boolean operations. The 3D mesh boolean method is particularly effective in calculating the precise geometry of intersecting models, making it a valuable tool for engineers and designers.

What Boolean operations MeshLib 3D boolean supports?

Two separate meshes

Inside A

  • Operation: Extracts the part of mesh A that is inside mesh B.
  • Applications: Useful for creating models where only the intersecting volume with another object is needed, such as custom-fit components in mechanical engineering.

Inside B

  • Operation: Extracts the part of mesh B that is inside mesh A.
  • Applications: Similar to “Inside A,” it can be used for designing parts that must fit within another object, often used in reverse engineering.

Outside A

  • Operation: Extracts the part of mesh A that is outside mesh B.
  • Applications: Ideal for removing intersecting parts from a design, such as creating spaces for components in product design.

Outside B

  • Operation: Extracts the part of mesh B that is outside mesh A.
  • Applications: Can be used for subtractive processes or to design components that exclude specific volumes, similar to “Outside A.”


  • Operation: Combines the surfaces of two meshes, focusing on the outside parts.
  • Applications: Useful for merging multiple components into a single part, simplifying assembly in manufacturing or creating complex models in architecture.


  • Operation: Generates the intersection surface of two meshes, focusing on the inside parts.
  • Applications: Essential for identifying and modeling the overlapping volume between components, such as fitting parts in mechanical assemblies.

Difference B-A

  • Operation: Subtracts the surface of mesh A from mesh B, focusing on the outside of B minus the inside of A.
  • Applications: Useful for creating molds or spaces where one object must fit perfectly inside another, often seen in mold making or packaging design.

Difference A-B

  • Operation: Subtracts the surface of mesh B from mesh A, focusing on the outside of A minus the inside of B.
  • Applications: Similar to “DifferenceBA,” it is used for subtractive modeling or creating negative spaces in a component, which is crucial in various manufacturing processes.

Mesh boolean vs Voxel boolean. What's the difference?

Mesh boolean


  • Transforming the mesh primarily around the areas where it contacts another object
  • Highly efficient for tasks where speed is a critical factor.


  • A sensitivity to imperfections in the input data. Can generate degenerate outputs, which may not be suitable for afterwards boolean operations.
  • Mesh Boolean does not support self-intersections in the input mesh.
  • can have a negative impact on the mesh quality even in areas far from the intersections with another object.

Voxel boolean


  • High-quality outcome when used with closed models.
  • Reliable option for boolean operations.


  • Voxel boolean operations require a conversion to a 3D raster, which is both time-consuming and memory-intensive.
  • It requires the bodies to be closed and without holes to function correctly.
  • This method tends to lose details finer than the voxel size and can have a negative impact on the mesh quality even in areas far from the intersections with another object.

Why choose MeshLib SDK for 3D boolean operations?

MeshLib leads in 3D processing, offering advanced 3D boolean operations, known for their speed and precision. As an open-source 3D geometry library, it supports both C++ and Python, offering versatility and easy integration into various projects. MeshLib’s recognition as the fastest tool for 3D boolean operations on the market accelerates project timelines, while its accuracy ensures the highest quality of 3D models. Besides MeshLib is based on robust algorithms and calculations you may learn more about here link. This combination of features makes MeshLib an essential resource for anyone looking to develop undertake sophisticated 3D modeling and application development. 

Play Video

What our customers say


Ruedger Rubbert

Chief Technology Officer, Brius Technologies Inc

"With MeshInspector MeshLib we were able to automate many of our workflow processes, thanks to its advanced, modern, and efficient dental and geometry oriented algorithms, covering many of our orthodontic-related tasks: CT and intraoral scan segmentation, voxel and Boolean operations, editing, aligning, visualization, inspection, and import/export of mesh objects. We use the versatile MeshInspector MeshLib API, both in production and R&D for fast prototyping and testing of our ideas."


Mariusz Hermansdorfer

Head of Computational Design at Henning Larsen Architechts

Over the past year, MeshLib has transformed my approach to design and analysis in landscape architecture and architecture projects. This powerful library excels in critical areas, such as geometry processing, interactive booleans, point cloud manipulation, and curve offsetting. These features enhance design workflows, allowing for dynamic modifications, efficient terrain modeling, stormwater flow analysis, and advanced wind flow visualiiza....."

Book a call with us